Effects of Cr2O3 modification on the performance of SnO2 electrodes in DSSCs.
نویسندگان
چکیده
In this paper, we demonstrate that Cr(2)O(3), a visible absorbing insulator, can be used as an efficient blocking layer material for the anode of dye-sensitized solar cells (DSSCs). We prepared SnO(2) electrodes surface-modified with Cr(2)O(3) with various Cr/Sn ratios and studied the effect of the modification on the performance of DSSCs. DSSCs with Cr/Sn ratios 0.02, 0.05, and 0.10 showed increased overall photon-to-electricity conversion efficiency from that of pure SnO(2). Especially, the DSSC with the Cr/Sn ratio 0.02 showed a remarkably large increase by 55%. The electrode materials were analyzed by powder X-ray diffraction, transmission electron microscopy, N(2) adsorption studies, and UV-Vis diffuse reflectance spectroscopy. The Cr-containing species appears to be Cr(2)O(3) nanoparticles, spread evenly on the SnO(2) nanoparticles and filling the gap space between SnO(2) particles. The electrochemical properties of the electrodes were characterized by Mott-Schottky plots and electrochemical impedance spectroscopy. As the Cr-content increases, the flat-band potential is negatively shifted. The impedance spectroscopy data show that Cr/Sn = 0.02 and 0.05 samples have lower charge transport resistance at the electrode, which can be explained by the rise of the conduction level due to the charge transfer from the more basic Cr(2)O(3) nanoparticles to SnO(2) nanoparticles. These observations corroborate with the trends of the short-circuit current and the open-circuit voltage of the DSSCs.
منابع مشابه
Influence of nanostructured TiO2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells
A commercial Ti-Nanoxide was deposited on In-doped SnO2 (ITO) polymer substrates by tape casting technique with different thicknesses (7, 14 and 36μm) to be used as photoelectrode in flexible dye-sensitized solar cells (DSSCs). Ruthenium dye was adsorbed on each TiO2 film for 24 h. The resulting photoelectrodes were used to form flexible DSSCs in combination with...
متن کاملHigh catalytic activity and stability of nickel sulfide and cobalt sulfide hierarchical nanospheres on the counter electrodes for dye-sensitized solar cells.
In situ grown nickel sulfide and cobalt sulfide hierarchical nanospheres on F-doped SnO2 (FTO) substrates exhibited comparable catalytic activities to sputtering Pt on the counter electrodes for dye-sensitized solar cells (DSSCs). The fresh cells with the nickel sulfide and cobalt sulfide on the counter electrodes could reach power conversion efficiencies of 6.81% and 6.59% respectively, approa...
متن کاملHierarchical SnO2@SnS2 Counter Electrodes for Remarkable High-efficiency Dye-sensitized Solar Cells
A hierarchical SnO2@SnS2 core-shell nanostructure has been prepared by in situ surface sulfurization of hollow SnO2 sphere via a facile two-step solution-based method and used as a substitute for conventional Pt counter electrode (CE) for dye-sensitized solar cells (DSSCs) for the first time. The resulted semitransparent SnO2@SnS2 CEs demonstrate a high electrical conductivity and excellent cat...
متن کاملHigh Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals
An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. Th...
متن کاملEnhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes
We report the fabrication and testing of dye sensitized solar cells (DSSC) based on tin oxide (SnO2) particles of average size ~20 nm. Fluorine-doped tin oxide (FTO) conducting glass substrates were treated with TiOx or TiCl4 precursor solutions to create a blocking layer before tape casting the SnO2 mesoporous anode. In addition, SnO2 photoelectrodes were treated with the same precursor soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 10 شماره
صفحات -
تاریخ انتشار 2012